References
[1] C. Fülling, T. G. Dinan, and J. F. Cryan, “Gut Microbe to Brain Signaling: What Happens in Vagus…,” Neuron, vol. 101, no. 6, pp. 998–1002, Mar. 2019, doi: 10.1016/j.neuron.2019.02.008.
[2] J. F. Cryan et al., “The Microbiota-Gut-Brain Axis,” Physiol. Rev., vol. 99, no. 4, pp. 1877–2013, Oct. 2019, doi: 10.1152/physrev.00018.2018.
[3] K. Gao, C.-L. Mu, A. Farzi, and W.-Y. Zhu, “Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain,” Adv. Nutr. Bethesda Md, vol. 11, no. 3, pp. 709–723, May 2020, doi: 10.1093/advances/nmz127.
[4] B. Bonaz, T. Bazin, and S. Pellissier, “The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis,” Front. Neurosci., vol. 12, p. 49, 2018, doi: 10.3389/fnins.2018.00049.
[5] R. Diaz Heijtz et al., “Normal gut microbiota modulates brain development and behavior,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 7, pp. 3047–3052, Feb. 2011, doi: 10.1073/pnas.1010529108.
[6] N. Sudo et al., “Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice,” J. Physiol., vol. 558, no. Pt 1, pp. 263–275, Jul. 2004, doi: 10.1113/jphysiol.2004.063388.
[7] A. Kazemi, A. A. Noorbala, K. Azam, M. H. Eskandari, and K. Djafarian, “Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial,” Clin. Nutr. Edinb. Scotl., vol. 38, no. 2, pp. 522–528, Apr. 2019, doi: 10.1016/j.clnu.2018.04.010.
[8] R. F. Slykerman et al., “Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial,” EBioMedicine, vol. 24, pp. 159–165, Oct. 2017, doi: 10.1016/j.ebiom.2017.09.013.
[9] A. L. Carlson et al., “Infant gut microbiome composition is associated with non-social fear behavior in a pilot study,” Nat. Commun., vol. 12, no. 1, Art. no. 1, Jun. 2021, doi: 10.1038/s41467-021-23281-y.
[10] S. F. Schoch et al., “From Alpha Diversity to Zzz: Interactions among sleep, the brain, and gut microbiota in the first year of life,” Prog. Neurobiol., vol. 209, p. 102208, Feb. 2022, doi: 10.1016/j.pneurobio.2021.102208.
[11] S. K. Tamana et al., “Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment,” Gut Microbes, vol. 13, no. 1, Art. no. 1, Jan. 2021, doi: 10.1080/19490976.2021.1930875.
[12] L. M. Christian, J. D. Galley, E. M. Hade, S. Schoppe-Sullivan, C. Kamp Dush, and M. T. Bailey, “Gut microbiome composition is associated with temperament during early childhood,” Brain. Behav. Immun., vol. 45, pp. 118–127, Mar. 2015, doi: 10.1016/j.bbi.2014.10.018.
[13] F. De Filippis et al., “High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome,” Gut, vol. 65, no. 11, pp. 1812–1821, Nov. 2016, doi: 10.1136/gutjnl-2015-309957.
[14] B. Dalile, L. Van Oudenhove, B. Vervliet, and K. Verbeke, “The role of short-chain fatty acids in microbiota-gut-brain communication,” Nat. Rev. Gastroenterol. Hepatol., vol. 16, no. 8, pp. 461–478, Aug. 2019, doi: 10.1038/s41575-019-0157-3.
[15] A. J. Bruce-Keller et al., “Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity,” Biol. Psychiatry, vol. 77, no. 7, pp. 607–615, Apr. 2015, doi: 10.1016/j.biopsych.2014.07.012.