References
[1] A. Di Ciaula et al., “Bile Acid Physiology,” Ann. Hepatol., vol. 16, no. Suppl. 1: s3-105., pp. s4–s14, Nov. 2017, doi: 10.5604/01.3001.0010.5493.Â
[2] A. Wahlström, S. I. Sayin, H.-U. Marschall, and F. Bäckhed, “Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism,” Cell Metab., vol. 24, no. 1, pp. 41–50, July 2016, doi: 10.1016/j.cmet.2016.05.005.Â
[3] M. Begley, C. G. M. Gahan, and C. Hill, “The interaction between bacteria and bile,” FEMS Microbiol. Rev., vol. 29, no. 4, pp. 625–651, Sept. 2005, doi: 10.1016/j.femsre.2004.09.003.Â
[4] J. A. Winston and C. M. Theriot, “Diversification of host bile acids by members of the gut microbiota,” Gut Microbes, vol. 11, no. 2, pp. 158–171, 2020, doi: 10.1080/19490976.2019.1674124.Â
[5] Z. Song et al., “Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome,” Microbiome, vol. 7, no. 1, p. 9, Jan. 2019, doi: 10.1186/s40168-019-0628-3.Â
[6] A. LabbĂ©, J. G. Ganopolsky, C. J. Martoni, S. Prakash, and M. L. Jones, “Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes,” PloS One, vol. 9, no. 12, p. e115175, 2014, doi: 10.1371/journal.pone.0115175.Â
[7] M. Vital, T. Rud, S. Rath, D. H. Pieper, and D. SchlĂĽter, “Diversity of Bacteria Exhibiting Bile Acid-inducible 7α-dehydroxylation Genes in the Human Gut,” Comput. Struct. Biotechnol. J., vol. 17, pp. 1016–1019, 2019, doi: 10.1016/j.csbj.2019.07.012.Â
[8] Y. Yang et al., “Systematic identification of secondary bile acid production genes in global microbiome,” mSystems, vol. 10, no. 1, p. e0081724, Jan. 2025, doi: 10.1128/msystems.00817-24.Â
[9] J. M. Ridlon, D. J. Kang, P. B. Hylemon, and J. S. Bajaj, “Bile acids and the gut microbiome,” Curr. Opin. Gastroenterol., vol. 30, no. 3, pp. 332–338, May 2014, doi: 10.1097/MOG.0000000000000057.Â
[10] L. Shi, L. Jin, and W. Huang, “Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases,” Cells, vol. 12, no. 14, p. 1888, July 2023, doi: 10.3390/cells12141888.Â
[11] M. Schoeler and R. Caesar, “Dietary lipids, gut microbiota and lipid metabolism,” Rev. Endocr. Metab. Disord., vol. 20, no. 4, pp. 461–472, Dec. 2019, doi: 10.1007/s11154-019-09512-0.Â
[12] D. K. Li et al., “Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury,” Sci. Adv., vol. 8, no. 34, p. eabo2794, Aug. 2022, doi: 10.1126/sciadv.abo2794.Â
[13] T. Inagaki et al., “Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 10, pp. 3920–3925, Mar. 2006, doi: 10.1073/pnas.0509592103.Â
[14] M. Camilleri and P. Vijayvargiya, “The Role of Bile Acids in Chronic Diarrhea,” Am. J. Gastroenterol., vol. 115, no. 10, pp. 1596–1603, Oct. 2020, doi: 10.14309/ajg.0000000000000696.Â
[15] L. K. Stenman, R. Holma, A. Eggert, and R. Korpela, “A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 304, no. 3, pp. G227-234, Feb. 2013, doi: 10.1152/ajpgi.00267.2012.Â
[16] S. Devkota et al., “Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice,” Nature, vol. 487, no. 7405, pp. 104–108, July 2012, doi: 10.1038/nature11225.Â
[17] C. Zhou, Y. Wang, C. Li, Z. Xie, and L. Dai, “Amelioration of Colitis by a Gut Bacterial Consortium Producing Anti-Inflammatory Secondary Bile Acids,” Microbiol. Spectr., vol. 11, no. 2, p. e0333022, Mar. 2023, doi: 10.1128/spectrum.03330-22.Â
[18] W. Sheng, G. Ji, and L. Zhang, “The Effect of Lithocholic Acid on the Gut-Liver Axis,” Front. Pharmacol., vol. 13, p. 910493, 2022, doi: 10.3389/fphar.2022.910493.Â
[19] A. B. Larabi, H. L. P. Masson, and A. J. Bäumler, “Bile acids as modulators of gut microbiota composition and function,” Gut Microbes, vol. 15, no. 1, p. 2172671, 2023, doi: 10.1080/19490976.2023.2172671.Â
[20] Z. He et al., “Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection,” Microbiome, vol. 10, no. 1, p. 79, May 2022, doi: 10.1186/s40168-022-01269-0.Â
[21] H. Bernstein, C. Bernstein, C. M. Payne, and K. Dvorak, “Bile acids as endogenous etiologic agents in gastrointestinal cancer,” World J. Gastroenterol., vol. 15, no. 27, pp. 3329–3340, July 2009, doi: 10.3748/wjg.15.3329.Â
[22] L. Liu et al., “Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis,” Food Funct., vol. 9, no. 11, pp. 5588–5597, Nov. 2018, doi: 10.1039/c8fo01143e.Â
[23] P. Das, S. Marcišauskas, B. Ji, and J. Nielsen, “Metagenomic analysis of bile salt biotransformation in the human gut microbiome,” BMC Genomics, vol. 20, no. 1, p. 517, June 2019, doi: 10.1186/s12864-019-5899-3.Â
[24] S. R. Sinha et al., “Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation,” Cell Host Microbe, vol. 27, no. 4, pp. 659-670.e5, Apr. 2020, doi: 10.1016/j.chom.2020.01.021.Â
[25] S. Sommersberger et al., “Altered fecal bile acid composition in active ulcerative colitis,” Lipids Health Dis., vol. 22, no. 1, p. 199, Nov. 2023, doi: 10.1186/s12944-023-01971-4.Â
[26] H. Duboc et al., “Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases,” Gut, vol. 62, no. 4, pp. 531–539, Apr. 2013, doi: 10.1136/gutjnl-2012-302578.Â
[27] D. Peterson, C. Weidenmaier, S. Timberlake, and R. Gura Sadovsky, “Depletion of key gut bacteria predicts disrupted bile acid metabolism in inflammatory bowel disease,” Microbiol. Spectr., vol. 13, no. 2, p. e0199924, Feb. 2025, doi: 10.1128/spectrum.01999-24.Â
[28] A. Heinken, D. A. Ravcheev, F. Baldini, L. Heirendt, R. M. T. Fleming, and I. Thiele, “Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease,” Microbiome, vol. 7, no. 1, p. 75, May 2019, doi: 10.1186/s40168-019-0689-3.Â
[29] J. Lloyd-Price et al., “Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases,” Nature, vol. 569, no. 7758, pp. 655–662, May 2019, doi: 10.1038/s41586-019-1237-9.Â
[30] E. Smirnova et al., “Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD,” Hepatol. Baltim. Md, vol. 76, no. 6, pp. 1811–1824, Dec. 2022, doi: 10.1002/hep.32568.Â
[31] N. Jiao et al., “Alterations in bile acid metabolizing gut microbiota and specific bile acid genes as a precision medicine to subclassify NAFLD,” Physiol. Genomics, vol. 53, no. 8, pp. 336–348, Aug. 2021, doi: 10.1152/physiolgenomics.00011.2021.Â
[32] K. Korpela et al., “Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children,” Nat. Commun., vol. 7, p. 10410, Jan. 2016, doi: 10.1038/ncomms10410.Â
[33] B. H. Mullish, A. Pechlivanis, G. F. Barker, M. R. Thursz, J. R. Marchesi, and J. A. K. McDonald, “Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease,” Methods San Diego Calif, vol. 149, pp. 49–58, Oct. 2018, doi: 10.1016/j.ymeth.2018.04.028.Â
[34] A. N. Barkun, J. Love, M. Gould, H. Pluta, and H. Steinhart, “Bile acid malabsorption in chronic diarrhea: pathophysiology and treatment,” Can. J. Gastroenterol. J. Can. Gastroenterol., vol. 27, no. 11, pp. 653–659, Nov. 2013, doi: 10.1155/2013/485631.Â
[35] J. M. Nieto, “Bile Acid Malabsorption: A Concise Review,” Gastroenterol. Hepatol. Open Access, vol. 4, no. 2, Feb. 2016, doi: 10.15406/ghoa.2016.04.00091.Â
[36] F. Fernandez-Bañares et al., “Bile acid malabsorption in microscopic colitis and in previously unexplained functional chronic diarrhea,” Dig. Dis. Sci., vol. 46, no. 10, pp. 2231–2238, Oct. 2001, doi: 10.1023/a:1011927302076.Â
[37] A. L. Ticho, P. Malhotra, P. K. Dudeja, R. K. Gill, and W. A. Alrefai, “Bile Acid Receptors and Gastrointestinal Functions,” Liver Res. Beijing China, vol. 3, no. 1, pp. 31–39, Mar. 2019, doi: 10.1016/j.livres.2019.01.001.Â
[38] J. Huang et al., “Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice,” Mol. Nutr. Food Res., vol. 62, no. 4, Feb. 2018, doi: 10.1002/mnfr.201700696.Â
[39] B. N. R. Ginos et al., “Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: A randomized, controlled, crossover feeding study,” Metabolism., vol. 83, pp. 197–204, June 2018, doi: 10.1016/j.metabol.2018.02.006.Â
[40] A. Kastl et al., “Dietary fiber-based regulation of bile salt hydrolase activity in the gut microbiota and its relevance to human disease,” Gut Microbes, vol. 14, no. 1, p. 2083417, 2022, doi: 10.1080/19490976.2022.2083417.Â
[41] Y. Wan et al., “Unconjugated and secondary bile acid profiles in response to higher-fat, lower-carbohydrate diet and associated with related gut microbiota: A 6-month randomized controlled-feeding trial,” Clin. Nutr. Edinb. Scotl., vol. 39, no. 2, pp. 395–404, Feb. 2020, doi: 10.1016/j.clnu.2019.02.037.Â
[42] W.-T. Wu, H.-C. Cheng, and H.-L. Chen, “Ameliorative effects of konjac glucomannan on human faecal β-glucuronidase activity, secondary bile acid levels and faecal water toxicity towards Caco-2 cells,” Br. J. Nutr., vol. 105, no. 4, pp. 593–600, Feb. 2011, doi: 10.1017/S0007114510004009.Â
[43] T. Padro et al., “Lactiplantibacillus plantarum strains KABP011, KABP012, and KABP013 modulate bile acids and cholesterol metabolism in humans,” Cardiovasc. Res., vol. 120, no. 7, pp. 708–722, May 2024, doi: 10.1093/cvr/cvae061.Â
[44] M. L. Jones, C. J. Martoni, and S. Prakash, “Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial,” Eur. J. Clin. Nutr., vol. 66, no. 11, pp. 1234–1241, Nov. 2012, doi: 10.1038/ejcn.2012.126.Â
[45] G. Marasco et al., “Pathophysiology and Clinical Management of Bile Acid Diarrhea,” J. Clin. Med., vol. 11, no. 11, p. 3102, May 2022, doi: 10.3390/jcm11113102.Â
[46] Y. Araki, K.-I. Mukaisho, Y. Fujiyama, T. Hattori, and H. Sugihara, “The herbal medicine rikkunshito exhibits strong and differential adsorption properties for bile salts,” Exp. Ther. Med., vol. 3, no. 4, pp. 645–649, Apr. 2012, doi: 10.3892/etm.2012.478.Â