References
[1] B. A. H. Jensen et al., “Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration,” Cell Reports Medicine, vol. 4, no. 9, p. 101190, Sept. 2023, doi: 10.1016/j.xcrm.2023.101190.
[2] H. Zafar and M. H. Saier Jr, “Gut Bacteroides species in health and disease,” Gut Microbes, vol. 13, no. 1, p. 1848158, Jan. 2021, doi: 10.1080/19490976.2020.1848158.
[3] R. Huang et al., “Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications,” Microbiological Research, vol. 260, p. 127019, July 2022, doi: 10.1016/j.micres.2022.127019.
[4] E. Dempsey and S. C. Corr, “Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives,” Front. Immunol., vol. 13, Apr. 2022, doi: 10.3389/fimmu.2022.840245.
[5] A. M. Tingler and M.A. Engevik, M. A. Breaking down barriers: is intestinal mucus degradation by Akkermansia muciniphila beneficial or harmful? Infection and Immunity, 93(9), e0050324. https://doi.org/10.1128/iai.00503-24
[6] M. F. Neurath, D. Artis, and C. Becker, “The intestinal barrier: a pivotal role in health, inflammation, and cancer,” The Lancet Gastroenterology & Hepatology, vol. 10, no. 6, pp. 573–592, June 2025, doi: 10.1016/S2468-1253(24)00390-X.
[7] J. M. Allen et al., “Psychological stress disrupts intestinal epithelial cell function and mucosal integrity through microbe and host-directed processes,” Gut Microbes, vol. 14, no. 1, p. 2035661, Dec. 2022, doi: 10.1080/19490976.2022.2035661.
[8] S.-J. Leigh et al., “The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota–gut–brain axis perspective,” The Journal of Physiology, vol. 601, no. 20, pp. 4491–4538, 2023, doi: 10.1113/JP281951.
[9] P. Li et al., “Impacts of food additives on gut microbiota and host health,” Food Research International, vol. 196, p. 114998, Nov. 2024, doi: 10.1016/j.foodres.2024.114998.
[10] K. Whelan, A. S. Bancil, J. O. Lindsay, and B. Chassaing, “Ultra-processed foods and food additives in gut health and disease,” Nat Rev Gastroenterol Hepatol, vol. 21, no. 6, pp. 406–427, June 2024, doi: 10.1038/s41575-024-00893-5.
[11] C. Andrews, M. H. McLean, and S. K. Durum, “Cytokine Tuning of Intestinal Epithelial Function,” Front. Immunol., vol. 9, June 2018, doi: 10.3389/fimmu.2018.01270.
[12] C. Zeyneloglu et al., “The epithelial barrier theory proposes a comprehensive explanation for the origins of allergic and other chronic noncommunicable diseases,” FEBS Letters, vol. 599, no. 22, pp. 3208–3243, 2025, doi: 10.1002/1873-3468.70113.
[13] S. Mohammad and C. Thiemermann, “Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions,” Front. Immunol., vol. 11, Jan. 2021, doi: 10.3389/fimmu.2020.594150.
[14] F. Di Lorenzo, C. De Castro, A. Silipo, and A. Molinaro, “Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions,” FEMS Microbiol Rev, vol. 43, no. 3, pp. 257–272, May 2019, doi: 10.1093/femsre/fuz002.
[15] A. G. Buret, T. Allain, J.-P Motta, and J.L. Wallace. (2022). “Effects of hydrogen sulfide on the microbiome: From toxicity to therapy.” Antioxidants & Redox Signaling, Vol. 36, No. 4-6, pp. 211–219, February, 2022, doi: 10.1089/ars.2021.0004
[16] K. E. Hays, J. M. Pfaffinger, and R. Ryznar, “The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease,” Gut Microbes, vol. 16, no. 1, p. 2393270, Dec. 2024, doi: 10.1080/19490976.2024.2393270.
[17] D. Zhang et al., “Short-chain fatty acids in diseases,” Cell Commun Signal, vol. 21, no. 1, p. 212, Aug. 2023, doi: 10.1186/s12964-023-01219-9.
[18] D. Belelli, J. J. Lambert, M. L. Y. Wan, A. R. Monteiro, D. J. Nutt, and J. D. Swinny, “From bugs to brain: unravelling the GABA signalling networks in the brain–gut–microbiome axis,” Brain, vol. 148, no. 5, pp. 1479–1506, May 2025, doi: 10.1093/brain/awae413.
[19] P. Strandwitz et al., “GABA-modulating bacteria of the human gut microbiota,” Nat Microbiol, vol. 4, no. 3, pp. 396–403, Mar. 2019, doi: 10.1038/s41564-018-0307-3.
[20] H. D. Holscher, “Dietary fiber and prebiotics and the gastrointestinal microbiota,” Gut Microbes, vol. 8, no. 2, pp. 172–184, Mar. 2017, doi: 10.1080/19490976.2017.1290756.
[21] K. Makki, E. C. Deehan, J. Walter, and F. Bäckhed, “The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease,” Cell Host & Microbe, vol. 23, no. 6, pp. 705–715, June 2018, doi: 10.1016/j.chom.2018.05.012.
[22] K. Hodgkinson et al., “Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease,” Clinical Nutrition, vol. 42, no. 2, pp. 61–75, Feb. 2023, doi: 10.1016/j.clnu.2022.10.024.
[23] J. K. Tan, L. Macia, and C. R. Mackay, “Dietary fiber and SCFAs in the regulation of mucosal immunity,” Journal of Allergy and Clinical Immunology, vol. 151, no. 2, pp. 361–370, Feb. 2023, doi: 10.1016/j.jaci.2022.11.007.
[24] Z.-W. Guan, E.-Z. Yu, Q. Feng, Z.-W. Guan, E.-Z. Yu, and Q. Feng, “Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota,” Molecules, vol. 26, no. 22, Nov. 2021, doi: 10.3390/molecules26226802.
[25] F. Meiners, A. Ortega-Matienzo, G. Fuellen, and I. Barrantes, “Gut microbiome-mediated health effects of fiber and polyphenol-rich dietary interventions,” Front. Nutr., vol. 12, Aug. 2025, doi: 10.3389/fnut.2025.1647740.
[26] V. Valentino et al., “Fermented foods, their microbiome and its potential in boosting human health,” Microbial Biotechnology, vol. 17, no. 2, p. e14428, 2024, doi: 10.1111/1751-7915.14428.
[27] V. Monda et al., “Exercise Modifies the Gut Microbiota with Positive Health Effects,” Oxidative Medicine and Cellular Longevity, vol. 2017, no. 1, p. 3831972, 2017, doi: 10.1155/2017/3831972.
[28] M. Clauss, P. Gérard, A. Mosca, and M. Leclerc, “Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance,” Front. Nutr., vol. 8, June 2021, doi: 10.3389/fnut.2021.637010.
‍