References
[1] C. Martin-Gallausiaux, L. Marinelli, H. M. Blottière, P. Larraufie, and N. Lapaque, “SCFA: mechanisms and functional importance in the gut,” Proc. Nutr. Soc., vol. 80, no. 1, pp. 37–49, Feb. 2021, doi: 10.1017/S0029665120006916.
[2] D. Parada Venegas et al., “Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases,” Front. Immunol., vol. 10, p. 277, 2019, doi: 10.3389/fimmu.2019.00277.
[3] M. E. Caetano-Silva, L. Rund, N. T. Hutchinson, J. A. Woods, A. J. Steelman, and R. W. Johnson, “Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids,” Sci. Rep., vol. 13, no. 1, p. 2819, Feb. 2023, doi: 10.1038/s41598-022-27086-x.
[4] D. R. Donohoe et al., “The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon,” Cell Metab., vol. 13, no. 5, pp. 517–526, May 2011, doi: 10.1016/j.cmet.2011.02.018.
[5] L. Peng, Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin, “Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers,” J. Nutr., vol. 139, no. 9, pp. 1619–1625, Sep. 2009, doi: 10.3945/jn.109.104638.
[6] L. Zheng et al., “Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2,” J. Immunol. Baltim. Md 1950, vol. 199, no. 8, pp. 2976–2984, Oct. 2017, doi: 10.4049/jimmunol.1700105.
[7] R. Corrêa-Oliveira, J. L. Fachi, A. Vieira, F. T. Sato, and M. A. R. Vinolo, “Regulation of immune cell function by short-chain fatty acids,” Clin. Transl. Immunol., vol. 5, no. 4, p. e73, Apr. 2016, doi: 10.1038/cti.2016.17.
[8] A. Haghikia et al., “Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism,” Eur. Heart J., vol. 43, no. 6, pp. 518–533, Feb. 2022, doi: 10.1093/eurheartj/ehab644.
[9] G. Frost et al., “The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism,” Nat. Commun., vol. 5, p. 3611, Apr. 2014, doi: 10.1038/ncomms4611.
[10] C. S. Reigstad et al., “Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 29, no. 4, pp. 1395–1403, Apr. 2015, doi: 10.1096/fj.14-259598.
[11] M. E. Caetano-Silva, L. Rund, N. T. Hutchinson, J. A. Woods, A. J. Steelman, and R. W. Johnson, “Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids,” Sci. Rep., vol. 13, no. 1, p. 2819, Feb. 2023, doi: 10.1038/s41598-022-27086-x.
[12] I. C. M. Hoogland, C. Houbolt, D. J. van Westerloo, W. A. van Gool, and D. van de Beek, “Systemic inflammation and microglial activation: systematic review of animal experiments,” J. Neuroinflammation, vol. 12, p. 114, Jun. 2015, doi: 10.1186/s12974-015-0332-6.
[13] S. T. Dheen, C. Kaur, and E.-A. Ling, “Microglial activation and its implications in the brain diseases,” Curr. Med. Chem., vol. 14, no. 11, pp. 1189–1197, 2007, doi: 10.2174/092986707780597961.
[14] S. Isik, B. Yeman Kiyak, R. Akbayir, R. Seyhali, and T. Arpaci, “Microglia Mediated Neuroinflammation in Parkinson’s Disease,” Cells, vol. 12, no. 7, p. 1012, Mar. 2023, doi: 10.3390/cells12071012.
[15] M. E. Caetano-Silva, L. Rund, N. T. Hutchinson, J. A. Woods, A. J. Steelman, and R. W. Johnson, “Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids,” Sci. Rep., vol. 13, no. 1, p. 2819, Feb. 2023, doi: 10.1038/s41598-022-27086-x.
[16] V. Braniste et al., “The gut microbiota influences blood-brain barrier permeability in mice,” Sci. Transl. Med., vol. 6, no. 263, p. 263ra158, Nov. 2014, doi: 10.1126/scitranslmed.3009759.