References
[1] J. F. Cryan et al., “The Microbiota-Gut-Brain Axis,” Physiol. Rev., vol. 99, no. 4, pp. 1877–2013, Oct. 2019, doi: 10.1152/physrev.00018.2018.
[2] S. N. Spohn and G. M. Mawe, “Non-conventional features of peripheral serotonin signalling - the gut and beyond,” Nat. Rev. Gastroenterol. Hepatol., vol. 14, no. 7, pp. 412–420, Jul. 2017, doi: 10.1038/nrgastro.2017.51.
[3] C. S. Reigstad et al., “Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 29, no. 4, pp. 1395–1403, Apr. 2015, doi: 10.1096/fj.14-259598.
[4] M. A. Engevik et al., “Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis,” Cell. Mol. Gastroenterol. Hepatol., vol. 11, no. 1, pp. 221–248, 2021, doi: 10.1016/j.jcmgh.2020.08.002.
[5] J. M. Yano et al., “Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis,” Cell, vol. 161, no. 2, pp. 264–276, Apr. 2015, doi: 10.1016/j.cell.2015.02.047.
[6] F. Özoğul, E. Kuley, Y. Özoğul, and İ. Özoğul, “The Function of Lactic Acid Bacteria on Biogenic Amines Production by Food-Borne Pathogens in Arginine Decarboxylase Broth,” Food Sci. Technol. Res., vol. 18, no. 6, pp. 795–804, 2012, doi: 10.3136/fstr.18.795.
[7] A. V. Oleskin, O. G. Zhilenkova, B. A. Shenderov, A. M. Amerhanova, V. S. Kudrin, and P. M. Klodt, “Lactic-Acid Bacteria Supplement Fermented Dairy Products with Human Behavior-Modifying Neuroactive Compounds,” J. Pharm. Nutr. Sci., vol. 4, no. 3, Art. no. 3, Jun. 2014, doi: 10.6000/1927-5951.2014.04.03.5.
[8] T. C. Fung et al., “Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut,” Nat. Microbiol., vol. 4, no. 12, pp. 2064–2073, Dec. 2019, doi: 10.1038/s41564-019-0540-4.
[9] B. B. Williams et al., “Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine,” Cell Host Microbe, vol. 16, no. 4, pp. 495–503, Oct. 2014, doi: 10.1016/j.chom.2014.09.001.
[10] C. Fülling, T. G. Dinan, and J. F. Cryan, “Gut Microbe to Brain Signaling: What Happens in Vagus…,” Neuron, vol. 101, no. 6, pp. 998–1002, Mar. 2019, doi: 10.1016/j.neuron.2019.02.008.
[11] K.-A. McVey Neufeld et al., “Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling,” Sci. Rep., vol. 9, no. 1, p. 14290, Oct. 2019, doi: 10.1038/s41598-019-50807-8.
[12] S. Liang et al., “Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress,” Neuroscience, vol. 310, pp. 561–577, Dec. 2015, doi: 10.1016/j.neuroscience.2015.09.033.
[13] W. Roth, K. Zadeh, R. Vekariya, Y. Ge, and M. Mohamadzadeh, “Tryptophan Metabolism and Gut-Brain Homeostasis,” Int. J. Mol. Sci., vol. 22, no. 6, p. 2973, Mar. 2021, doi: 10.3390/ijms22062973.
[14] N. L. Soh and G. Walter, “Tryptophan and depression: can diet alone be the answer?,” Acta Neuropsychiatr., vol. 23, no. 1, pp. 3–11, Feb. 2011, doi: 10.1111/j.1601-5215.2010.00508.x.
[15] K. Berding et al., “Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population,” Mol. Psychiatry, vol. 28, no. 2, pp. 601–610, Feb. 2023, doi: 10.1038/s41380-022-01817-y.