References
[1] P. A. Nieto et al., “Improving immune-related health outcomes post-cesarean birth with a gut microbiome-based program: A randomized controlled trial,” Pediatric Allergy and Immunology, vol. 36, no. 9, p. e70182, 2025, doi: 10.1111/pai.70182.
[2] H. Nunez, P. A. Nieto, R. A. Mars, M. Ghavami, C. Sew Hoy, and K. Sukhum, “Early life gut microbiome and its impact on childhood health and chronic conditions,” Gut Microbes, vol. 17, no. 1, p. 2463567, Dec. 2025, doi: 10.1080/19490976.2025.2463567.
[3] T. Vatanen et al., “The human gut microbiome in early-onset type 1 diabetes from the TEDDY study,” Nature, vol. 562, no. 7728, pp. 589–594, Oct. 2018, doi: 10.1038/s41586-018-0620-2.
[4] S. Choragudi and G. Yosipovitch, "Trends in the Prevalence of Eczema Among US Children by Age, Sex, Race, and Ethnicity From 1997 to 2018," JAMA Dermatol, vol. 159, no. 4, pp. 454-456, Apr. 2023, doi: 10.1001/jamadermatol.2022.6647.
[5] S. P. Wiertsema, J. van Bergenhenegouwen, J. Garssen, and L.M. J. Knippels, "The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies," Nutrients, vol. 13, no. 3, p. 886, Mar. 2021, doi: 10.3390/nu13030886.
[6] M. Depner et al., “Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma,” Nat Med, vol. 26, no. 11, pp. 1766–1775, Nov. 2020, doi: 10.1038/s41591-020-1095-x.
[7] J. B. Jarman et al., "Bifidobacterium deficit in United States infants drives prevalent gut dysbiosis," Commun Biol, vol. 8, no. 1, p. 867, Jun. 2025, doi: 10.1038/s42003-025-08274-7.
[8] D. A. Sela et al., "The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome," Proc Natl Acad Sci U S A, vol. 105, no. 48, pp. 18964–18969, Dec. 2008, doi: 10.1073/ pnas.0809584105.
[9] L. J. Kiely, K. Busca, J. A. Lane, D. van Sinderen, and R. M. Hickey, "Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria," FEMS Microbiol Rev, vol. 47, no. 6, p. fuad056, Nov. 2023, doi: 10.1093/ femsre/fuad056.
[10]  S. A. Frese et al., “Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants,” Msphere, vol. 2, no. 6, pp. e00501-17, 2017, doi: 101128/msphere.00501-17.
[11] J. Roswall, et al. "Developmental trajectory of the healthy human gut microbiota during the first 5 years of life." Cell Host Microbe 29, 765-776.e3 (2021).
[12] P. S. Pannaraj et al., "Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome," JAMA Pediatr, vol. 171, no. 7, pp. 647-654, Jul. 2017, doi: 10.1001/jamapediatrics.2017.0378.
[13] F. Bäckhed et al., "Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life," Cell Host Microbe, vol. 17, no. 5, pp. 690-703, May 2015, doi: 10.1016/J.chom.2015.04.004.
[14] H. J. Lee, G.-N. Lee, J. H. Lee, J. H. Han, K. Han, and Y. M. Park, "Psychological Stress in Parents of Children with Atopic Dermatitis: A Cross-sectional Study from the Korea National Health and Nutrition Examination Survey," Acta Derm Venereol, vol. 103, p. adv00844, Jan. 2023, doi: 10.2340/actadv.v103.2242.
[15] R. Chovatiya, W. S. Begolka, I. J. Thibau, and J. I. Silverberg, “The financial burden of out‐of‐pocket healthcare expenses on caregivers of children with atopic dermatitis in the United States,” Skin Health Dis, vol. 3, no. 1, p. e191, Nov. 2022, doi: 10.1002/ski2.191.